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VARIATIONAL PRINCIPLES IN THE MATHEMATICAL

THEORY OF PLASTICITY

Do C, Drucker**(Brown University)

The fundamental definitions of work-hardening and perfect

plasticity have been shown to have strong implications with respect to

uniqueness of solution for elastic-plastic bodies# It is not surprising,

therefore, to find that they lead rather directly to the variational

principles as welle Perfect plasticity theory and both the incrementally

linear and the incrementally non-linear theories for work-hardening materials

are considered. The several counterparts of the minimum potential energy

and the minimum complementary energy theorems are derived in a unified

manner for stress-strain relations of great generality. Absolute minimum

principles rather than relative are established,

*The results presented in this paper were obtained in the course of research

conducted under Contract Nonr 562(10) by the Office of Naval Research and
Brown University.

*"Chairman, Division of Engineering, Brown University, Providence 12, R. I.

Note, This paper is scheduled for presentation at the Applied Mathematics
Symposiums April 12-13, 1956, Chicago, Illinoiso
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Introduction

There are any number of approaches to the establishment of

variational principles, One is to state the principles directly and then

proceed to prove them* Although clear and precise statements can be made,

the motivation for the original inspiration does not appear. A newcomer

to the field then frequently will be unable to appreciate the development

and generally will not see how to produce appropriate theorems or modifi-

cations of his own. The approach to be followed here does not suppose

the result to be known in advance. It is synthetic in a sense because

the basic theorems have been stated and proved for a number of special

materials [i([2][5]* Nevertheless, it is a procedure which arises logically

from fundamental postulates in elasticity and in plasticity theory, and it

is systematics

In the theory of elasticity, whether linear or non-linear, the

steps are reasonably straightforward. The equation of virtual work is

written first under the implicit assumption of continuity of displacement

and what may be termed equilibrium continuity of the stresses (surface

tractions must be continuous across any surface but the normal stress

components parallel to the surface may be discontinuous). In a common

notation, repeated subscripts indicating summationt

T*UidA + FiUidV =viijdV (1)
fA iii i mj'V ijdV

The starred quantities are related through equilibrium and the unstarred

are compatibles There need be no relation between the two sets of quantities.

For convenience, the surface area A is divided into the region AT on

which the surface tractions T are specified and the region Au  over

*Numbers in square brackets refer to the bibliography at the end of the

paper.
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which displacements ui  are given. The true and unique solution (no

buckling, no initial stress) to the boundary value problem with given

body forces Fi  thus satisfies

a i idV T tiuidA - Ti  dA Fi udV =0 (2)

Au ATV

If approximate solutions are sought, two procedures suggest

themselves immediately, One is to choose a compatible strain-displacement

field ji 1 4 and satisfy the boundary conditions on Au . The other is

to select an equilibrium stress field aij which satisfies the surface

traction boundary conditions on AT, More elaborate mixed schemes may be

devised but they cannot be classed as obvious [3J.

The value of an approximation procedure, or of a guess, must be

determined by comparison of the approximate solution with the unknown true

answer* The real difficulty and the intuitive heart of the problem lies

in the decision on what should be compared. As has been noted, the equation

of virtual work will be satisfied if the natural strains and displacements

are replaced by any chosen set satisfying compatibility and the boundary

conditions on Au Therefore

yi i~cdV c TidA - i FcdV fa [(ijcijdV T-d 5FiutidV (3)
V~ ~ -A TOi,- V o)Tiu

Transposing and calling the difference between the true and the

assumed solution Aeij, Aui

a J td Ti~uidA F FuidV a 0 (4i)

This form suggests strongly a consideration of the elastic strain

energy density written as a function of strain alone

W(ciJ) " fOijdeij (5)
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because WI - deii -aiideijo Equation (4) can then be restated as
ii

8ri tdV 1 6 [P.E. J 0o

8j W(it)dV TiutdA -j~ p t  t1 (6)

where 6e  is to be interpreted as the first variation of the expression

in brackets (the potential energy) as ui  and c are varied in

accordance with compatibility and the boundary conditions on ui.

A variational principle is not necessarily very helpful in solving

problems* The assumed state may not be close to the true one. What is

required instead is an absolute maximum or minimum principle, a comparison

of the value of the potential energy for the assumed state with that of

the true state, without restriction on the magnitude of the difference

between the states. The presentation here is, however, within the frame-

work of small displacement theory& A comparison may be made with the aid

of the identity

f(eii )dV JA iAT - IV FjidV V fvw i )i) - fTiui A - fFiuidV
fVw  A IV

AT  AT

+ fV[w(ei ) -w(eit)]d - T Au dA- ud 7

In view of (4), therefore, the potential energy of any admissible compatible

state is algebraically more than the potential energy of the true state by

PEd" P.t' 'J[ W(ec) -W(a t) a .- tAij dV (8)

The integrand may be rewritten as
cc t Icl ij ij

f aijd, j 1 odijdaij, oi A'J t (aijoij)dei1 (9)
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The rectangles in Fig. 1 symbolize a iAij The shaded triangles

represent (9), the integrand of (8). In Figs. la, bp c the triangles are

on the positive strain energy side of the symbolic stress-strain curves

for any magnitude Aeij. The potential energy is an absolute minimum for

a linear or for a stable non-linear elastic material. For an unstable

material, Figs. id, e, the shaded triangles are on the negative side for

some 4eij and the potential energy is not an absolute minimum.

A similar set of steps leads to the principle of minimum

t
complementary energy. Equation (2) is satisfied if the a i , Ti, Fi

system is replaced by any other in equilibrium. For any state of stress

E which satisfies the boundary conditions on AT and is in equilibrium
ij

with F i

P t

VJaijjdV - 3 ATiuidA - 0 (10)

where a E . ait W Acij and ATi is the corresponding change in surface
ij ii i

traction on Au,

The complementary energy density as a function of stress alone

is suggested by the first integral.
oij

2 (Cri eijdoij (11)
0

because d2 u 2i da ij - e ijdoij Equation (10) can then be restated

as a Bda.

aaJ (at)dV ATiuidA . a[C.E ]  0 (12)

where 8 is to be interpreted as the first variation of the expressiona
in brackets (complementary energy) as aij and Ti are varied in accord-

ance with equilibrium with Fi and the boundary conditions on ATo Fig. 2
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is symbolic of the fact that the complementary energy is an absolute minimum

for a stable material. Corresponding to (8) and (9)

C -EeE _CAt - 2(a t) - eij] dV (13)

where the integrand may be rewritten as
E

( e it)daij (14)

The symbolic representation of the stress and strain tensors

by one dimension each in Figs. 1 and 2 and the terms stable and unstable

can be given general meaning and made precise*

The Fundamental Postulate for Elasticity and Plasticity

A basic postulate has been formulated for both elastic and

plastic media [i4] without time effects. It is essentially a definition

of a stable material and may be stated as follows:

No work can be extracted from the material and the system of

forces acting upon it.

A more useful statement is in terms of an external agency which applies

a set of additional forces to the body under a given load and then removes

the added forces* The external agency must do positive work in the applica-

tion of force. Over the cycle of application and removal the work done

the external agency must be positive if plastic deformation occurs in work-

hardening material and will be zero if elastic changes only take place.

For a perfectly plastic material, the work done by the external agency may

be zero also when plastic deformation takes place although generally it will

be positive.

The basic postulate may be applied to a homogeneous material under

a a
homogeneous stress aia and strain tije Suppose the external agency
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changes the state of stress by Aq , to ci b. The strain will changei ib
by hiJ to e bs Then the postulate requires

6b

a ij "ai)d lJ > 0 
(15)

The value of the integral is strongly path dependent in the plastic range)

but is of course independent of path for any elastic material.

Absolute Minimum Principles in Elasticity

The inequality (15) is a formal expression of the requirement

that the shaded triangles of Fig. 1 be on the positive strain energy side

of the stress-strain curve. Although for a non-linear elastic material

8ib depends upon e a as well as on Acij , the integral is path independ-
the inega ispt bneeda b

ent. Choosing a straight line path in stress space from aij to aij

it is obvious that inequality (15) may be continued as

&b

a) (aa )d6 < a) AO (16)
I - i3 iJj iJ - iJ iJ

ia

Also, from

b a b a b
(a iJ.iJ)(6iJe i i d[(i JiiJ)(CiJaCi)]

ab . b1i ij i a)(17)

16 ijOr F joaci + ( a
bii

0 ja ( - ) < ij"i (18)

Inequality (18) expresses the requirement that the shaded triangles be as

shown in Fig. 2a, b, c and not as in Fig. 2d, e.

Materials of the type of Figs. ld, e and 2d, e are thus excluded

from our consideration although not necessarily from physical reality. For
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elastic materials which follow the postulated behavior, comparison of

(16) with (9) and of (18) with (14) proves that the potential energy and

the complementary energy of the true state each is an absolute minimum

PIE, t < P.E. c

C.Et < C.E 
(19)

the equality sign applying only to the trivial case of the admissible state

c or E coinciding with the true state*

Deformation or Total Theories of Plasticity

If no distinction is made between loading and unloading, or if

each point of the body is assumwed to be at the maximum load intensity in

its history, deformation theories postulate a unique relation between stress

and total strain., Although physically unacceptable in general because

plastic deformation is path dependent and irreversible, such theories do

in some instances lead to very useful results* Under the assumptions

mntioned there is no need to consider deformation theory further as it is

essentially non-linear elasticity. No matter how elaborate the stress-

strain relation, if the material postulated is stables the principles of

minimum potential and minimum complementary energy apply without any change.

If, on the other hand, loading is taken to be non-linear but

unloading is assumed to follow a linear elastic-relation, the inconsistency

of deformation theory becomes of primary importance. The mathematical

and physical meaning of solutions then becomes quite obscure.

Work-Hardening Relations Involving Increments of Stress and Strain

The fundamental postulate of positive work by an external agency

has very far reaching implications. As shown in Fig. 3 the plastic strain

increment or strain rate vector eij must be normal to the yield or loading



Cl-13 -9-

surface at a smooth point and between normals to adjacent points at a

corner. At a amooth point

f I af (f
ai C+ G -C *o (20)acij Cki

where Cijkiakt is the elastic response, G and f are functions of the

state of the material which may include strain and the history of loading

as well as the existing state of stress. G may in addition be a homogeneous

function of order zero in the stress rate a In pictorial terms, Fig. 3,

G may depend upon the direction of aij but doubling cij doubles eiJ"

In all stress-strain relations in use today, G is taken as completely

independent of cij so that in the form

'p

e O H k (21)

the H iJk likewise are independent of akV. The coefficients Hijki. which

appear similar to the Cijk, of linear anisotropic elasticity may be

horribly complicated functions of the present state and prior history.

If a comer is considered to be a set of intersecting loading

surfaces [7-[101 each of which makes its independent contribution to

the plastic strain rate, Fig. 4, then

&(1)H + (2). -() +

iJ C ijkak4 ijkZ k4 ( ijkakC + ...... ijkt ka

.(CijkC + Bijk )a k 
(22)

It is important to keep in mind that the coefficients (m)ijk4 are to be

taken as zero unless a has an outward pointing normal component just as

in (20) where the plastic term must be chosen as zero if unloading takes

place. Stress rate vectors having different directions often will activate

different loading surfaces so that despite the apparent linearity of (22)
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it is not true in general that the strain rate produced by two stress rates

acting simultaneously is the sum of the strain rates for each individually.

In fact, at a corner the combination of two stress rates each of which

individually produces plastic action may result in an .unloading, Fig. 5.

Even when the (m)Hijke are independent of oi, the BijkZ will be

functions of the stress rate (order zero).

The basic postulate requires the initial rate of work by the

external agency to be positive, therefore

i- (C. + Bijk&) aijak > 0 (23)

and because the elastic component is recoverable

1 i a I Bijk . 1k > 0 (24)
7 i i 2 Bijkfcijake

for a work-hardening material unless ei - 0.

In the demonstration of the uniqueness theorem for stress and

strain rates [7]-[10] the entire point lies in the proof of

(a 0  b '~ ~ I b ' a(S

ai _ ij)(aj - ij) > v, a 4b (25)

where a and b are two assumed solutions for the rates from the stress

point CiL. If an infinitesmal time, arbitrarily chosen as unity, is

permitted to elapse the two stress states are aiL + aa ind cL + bij

Fig. 6. At a smooth point of the loading surface it is possible to go from

stress point b to stress point a, Fig. 6a, b, or from Stress point a

to b, Fig. 6a, c and change the strain by ai .bi' or bi . aii.

respectively in accord with (20) and (23). The work postulate for the b

to a case then gives, see (9)

a,&Fa  L'b I -da ij'u i-h b )r

fij Ci" {b (a a ij > 0 (26)
ibb
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The result (25) therefore is established (7] but the value of the

integral itself is of interest here.

o0< )a ,a b b ' b a . (alb-ta ) (27)
iJ iJ 2 ij ij iJ siJ < )(aci

so that as for (18)

a
0< j ( -bj)da:' i ~ a ,a6 , lb ' b' a 'bt' (28)
Jba, iJ" 2i j= ij iJ + +  °i±J " - i O j~

ij

For the a to b path, (27) and (28) merely interchange and the result

is therefore unaffected.

When at a corner there are two or more loading surfaces, Fig. 6d

the permissible path may be from b to a for one set of plastic strain

rates and from a to b for another. As both (27) and (28) apply to

each path, remembering to count the elastic strain rates but once, it is

clear that (27) and (28) apply just as they are even for this very complicated

case,

Two Minimum Theorems for Incremental Work-Hardening Theories

In general, theorems which hold in the elastic range cannot be

expected to apply in the plastic. As a consequence of irreversibility,

the uniqueness theorem for work-hardening theories of plasticity is in

terms of the increments or rates of stress and strain and not the stresses

and strains themselves. The equivalent variational or minimum principles

lilowise will be in terms of rates. Following the procedure established

previouslyp the principle of virtual work is written for the rates

J ' f 'A T dA- F* 'dV -0 (29)
VOi eU i'AT V Ti tip A i
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Equation (29) applies to the actual rates as it does for any compatible

strain rate distribution and any stress rate field in equilibriumg

When the true stress rates are varied while satisfying equilibrium

and the boundary conditions on AT (T - 0), the analog to (10) is

juij dV - j TiuidA - 0 (30)Au

The analog to complementary energy density (11) is simply

to 12- aijiJi ) (31)

corresponding to linear elasticity because the stress-strain relations are

time independent as exhibited by (21).

The form suggested for a variational principle similar to (12)

is

5o [ (a it)dV - JA uidA- 0 (32)

This complementary rate principle will be valid whenever the Hijki Of

(21) are independent of stress rate. All currently used forms (20) for

smooth loading surfaces are in this category. At a corner, however, as

previously explained the Hijk4 of (22) which are non-zero depend upon

the direction of crij. Therefore, 6 , Hi 3k q 0 for some or all

directions of loading and (32) is not valid.

A complementary rate minimum principle in a form equivalent to

(19) would be much more valuable

Sv tt )v t TE i uIdACij )d udA < Ej )d1V T (33)

The right hand side is algebraically larger than the left by
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IV yE u  ,E ,t,

[40oi ov) - )Jdv - (Ti -T1 )ui

P[ . E IS tt. ,t It
IV ( T (a e .0 J dV

where eiJ is computed from c Equation (22).

The integrand of (34) may be rewritten as

1 iE CE + 1 iIt it - c E It
1 aij eij 1clj "' ij ij iJ

Comparison with (28) shows that the fundamental work postulate

requires (35) to be positive and thus guarantees the minimum principle (33)

although (32) does not apply.

If now the strain rates are varied in the virtual work expression

for the true rate state while satisfying ul - 0 on Au, the equivalent

of (4) is

VJ aV - J T 'UidA - FAu'dV * 0 (36)

The analog to strain energy density (5) would be

lCjj

if (22) can be inverted as

! I

ai Aijkl 'k& (38)

Such inversion is not possible if the material is incompressible in either

the elastic or the elastic-plastic range. This difficulty can be circumvented

for such materials by solving for the stress rate deviation

a - a 6 k (39)
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and writing

, si ,it . _ ' (40)w(1 2j J S Ji 2ip

It can be shown, then, that a minimum potential rate principle holds

I~ t  3 ,,t 'T1 ,c
AT "dA F'u i jt < w(eij )dV

W~i)V - Tjiiui cA

vAT u

The right hand side exceeds the left by

)] w(& jt)]dV- j1 ' (ijc - i)d(42)
JV J ijC )d

when the surface traction rate and body force rate integrals are replaced

by volume integrals of stress rates. The sum of the integrands is

Ic I c i t It it c
e COij eCi - ii eiJ

Comparison of (43) with (27) proves (41) and once again

demonstrates that the minimum principles follow from the fundamental

postulate or definition of work-hardening.

Incrementally non-linear stress-strain relations have not been

studied in any detail. If G in (20) or Hijke in (21)'depend on the

direction of cij , the usual proof of the uniqueness theorem breaks down.

On the other hand, if uniqueness is assured the basic postulate in the

form of (26) or the first inequality (28) rill ensure the validity of the

absolute minimum principles (33) and (41) corresponding to complementary

and potential energy* A simple assumption which leads to uniqueness is

that the plastic strain rate is a monotonically increasing function of the

normal component of c7i's Although apparently a very reasonable postulates
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as a consequence of the proportionality between rates of stress and strain

for a given direction of a,' it is equivalent, unfortunately, to a

reduction to linearity.

Restricted Minimum Theorems

The complete parallelism of the developments of the minimum

principles for the elastic and for the elastic-plastic cases may have blurred

the basic approach. There are but a few independent combinations possible

for stress, stress rate, strain, and strain rate and it is worth while running

through some of them. As uniqueness of rates only is guaranteed it is not

likely that any new theorems of true generality will result for work-hardening

materials.

Suppose a theorem is desired for the plastic range which contains

the stresses and the strains themselves, Equations (2), (3), (4), and (10)

are written exactly as for elastic bodies. Again (5) and (11) would be

suggested by the form of (4) and (10). Now, however, the path of loading

is important and it is not true in general that 6 ij dei aW is a
a U10

function of final strain only, nor is J3j ijdaij a function of stress
soi

only. Nevertheless, if at each point of the material there has been no

unloading from any of the loading surfaces the irreversibility is not

apparent to the material. In this very limited sense, minimum complementary

and potential energy theorems hold for a very restricted and yet possibly

useful class of alternative admissible states [11].

Next suppose that a theorem is desired for strain rates and

stress* Virtual work is then written in the form

ijeildV - TiUdA - TdA " udV - 0 (44)
Va 'ai AT t

Varying the strain rate system from the true state without changing the
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displacement rate boundary conditions leads to

a tiAeidV - TiAuIdA - SFiAujdV - 0 (45)

The variational principle suggested is

[f (e(ilt)dV - Tiu.tdA "  Fu! dV - (46)
AT 1 V iI

where

a~t  t
arept -a t~ (147)
; lij

Such a principle can have meaning only if Sij determines aij or at

least 0 ij 6j. As this will not be true in general, (46) can be valid

for a restricted set of loading paths or special materials at most.

Varying the equilibrium system in the familiar manner results

in

8a L Y~(aiid -t) J TtufdAJ 0 (148)

which has meaning if and only if ci. determines eij or at least i
ij iiji.

(49

aaj1  ij

Therefore, (48) cannot apply to a work-hardening material.

Another possible set of theorems relates stress rates and strains

The corresponding equations then are found by interchanging primes and no

primes in (44)-(49) and the end results are

t V (s it)dV - A T' tdAc t

- - 5FiukdV -O (50)
V i ~T i-I
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where and only if ij determines aij

_ - it (51)

ae t iJ

and

, [ ,(c t )dv- T! tuidA ]-O (52)a V S, Au
AU

where and only if a determines eiJ iJ

ay t (53)
aa It -j
ij

Such theorems as these are therefore inappropriate for work-hardening

materials as defined. They will have limited validity at least for

materials whose state is described by surfaces in strain space rather

than in stress space [12](13].

Elastic-Perfectly Plastic Material

A perfectly plastic material may be defined directly or equally

well be considered as the limiting case of a work-hardening one for which

all subsequent loading surfaces coincide with the initial yield surface,

f - k, bounding purely elastic action. Unlimited plastic deformation may

occur at yield. As no stress increment is required for flow at yield, the

work done by an external agency may be zero when plastic deformation takes

place. The plastic strain rate vector is normal to the yield surface in

the extended sense, Fig. 3,

The stress-strain relation at a smooth point on the yield

surface is
I e ip Wt af
ii ii ij ijkS 4 + (54)
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and at a corner

, 1 all 2 af 2  (55)i "Cik ~ X +  X - + (55)

where each (fixed) intersecting yield surface makes its own contribution.

The X are homogeneous of degree minus one in time because the stress-

strain relations are independent of time. Each X is to be taken as zero

unless the 'stress point is on its yield surface and remains there in the

interval under consideration, They are otherwise indeterminate for a

homogeneous state of stress.

As a consequence of a fixed yield surface and normality,

I Ip
a e 0 (56)

iJ iJ

for all permissible aijo Therefore

to(aij) ' " a a I . le . C (57)

Also, the total strain rate vector is resolved uniquely into an elastic

and a plastic component at each stress point on the yield surface. At

an interior point, the strain rate is, of course, purely elastic. Therefore,

when the existing stress is known and the strain rate is given the stress

rate is determined except, again, for an incompressible material in which

the stress deviation rate is determined (similar to (38) and (39)]

2w(i) -aa 1 e aA ,e le > 0 (58)ij ij14 fiJ OkO

All the equations (26)-(43) are valid, therefore, with p

replacing w and wp replacing we The discussion of what happens at

a corner is simplified for a perfectly plastic material. If the strain
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rate vector points outward from the yield surface and lies between the

normals to adjacent points, see Fig. 3, it is purely plastic and the stress

rate is identically zero* If the strain rate vector points outward but has

a component tangent to the adjacent surface, that portion of the surface

governs and the stress point is then effectively at a smooth point on the

yield surface.

It is not surprising that a minimum complementary rate principle

and a minimum potential rate principle applies. As has been stated, a

perfectly plastic material is a limiting case of a work hardening one as

all successive loading surfaces approach the initial yield surface* The

lack of limitation on & for a homogeneous state of stress does not
ij

matter because, at a given stress point, 0i 1 1 is zero when the strain

rate and the stress rate are related and zero or negative when they represent

two independent states.

Additional theorems of some generality would be expected for a

perfectly plastic material because the yield surface does not depend upon

loading. The plastic strain rate vector is normal to the surface and so

determines the stress point itself or at worst a straight line or plane of

the surface, Fig. 7. Actually ei determines the rate of dissipation,
'pjCJeij , uniquely. The total strain rate vector by itself does not provide

any such information for an elastic-plastic material. However, for a

plastic-rigid material or for an elastic-plastic material at the limit load

[14], the elastic strain rates are identically zero. The total strain

rates are then plastic only and do determine the dissipation and the stress

to a considerable extent.

Under the restriction of zero elastic strain rate, following

-steps (44)-(47)p 6 does determine a fI a (P and the principle (46)

is established. Fbllowing steps (48) and (49), c0 i  is now zero so_ji J
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that T -0 and (48) applies.

Absolute minimum principles can be established which are

generalizations of the Markov [15] and Hill (16] principles and are

in fact equivalent to the limit theorems (14]. The minimum principle for

(46) is
iV t !A lu t dA  ('  IC Tiucd- I d
@( iJu )V-vFiU!tdV < ,! ej)dV A

S itd - A- -d -1 1Ti -vFiUi d

(59)

where ei C u i  is any compatible system taken as plastic only, and

(P .(Cj(eil)h is the dissipation function. The right hand side is

algebraically greater than the left by the volume integral of

it a ,eCe t c -ac eI o.C t ,c
c) (ei -(e it) " t C &i ) i = (aiiiJ)eiJ (60)

which is positive or zero in accordance with the basic work postulate [ 4]

or equally well from the convexity of the yield surface and the normality

of the plastic strain rate vector which themselves are consequences of the

postulates

The upper bound limit theorem (14) may be obtained from (59)

by observing that if ui  vanishes on Au, the left hand side is zero from

virtual work and

TJujA + iu dV < f ( ic)dV (61)

The minimum principle corresponding to (48) may be written as a

maximum principle by multiplying through by minus one

, TiuidA > J T1A (62)
Au JAU
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Proof follows directly from virtual work as the left hand side exceeds the

right by the volume integral of

(Gat E~i tt (63)

which is positive or zero just as (60). It is (63) which is the key in

the lower bound theorem of limit analysis [I]

The yield value and the yield criterion as well need not be the

same at each point of the material as nowhere in the proofs do such re-

strictions appear. Therefore (59) and (62) apply equally well to a rigid-

work hardening material at each stage of loading.

As mentioned in the previous section, theorems involving total

strain are not appropriate for the type of materials postulated in the

paper (13] so that the list of simple minimum principles seems exhausted.

Conclusion

A systematic procedure is presented for establishing variational

and minimum principles. The virtual work expression is written in terms

of the quantities for which a theorem is sought and a variation is tried

which suggests a possible principle. Use is then made of a basic postulate

for stable materials without time effects which had been formulated

previously 4]4: in the very strictest sense work cannot be extracted

from the stressed material and the system of forces acting upon it.

Substitution of the relation between the quantities which is given directly

by the fundamental postulate provides immediate proof of the valid

absolute minimum principles,

Minimum potential energy and minimum complementary energy theorems

(19) are established for linear and non-linear elastic bodies and for

deformation theories of plasticity by virtual work (2), the appropriate
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variation (4) or (10), and inequalities (16) or (18) as given by the

postulato.

Corresponding theorems [2][ 5] in which rates replace total

quantities (41) and (33) are established for work-hardening and for

perfectly plastic materials by virtual work (29), the appropriate variation

(36) or (30), and inequalities (27) or (28) given by the postulateo All

incrementally linear and the most complicated combinations of incrementally

linear forms, Fig. 4, are included.

Extended theorems (59) and (62) involving stress quantities and

strain and displacement rates [15)[16) are established for rigid-perfectly

plastic materials or elastic-perfectly plastic at limit loading or collapse.

The steps are virtual work (44), the variations (45) or (48), and inequalities

given by the postulate as indicated following (60) or (63).
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